
www.manaraa.com

* This work is being developed as a joint work by Maestría en Inteligencia Artificial of the Universidad Veracruzana,
and Laboratorio Nacional de Informática Avanzada, LANIA, A.C.
This project is part of a major project called "Modelo y Arquitectura de Cómputo Paralelo, Distribuido y
Cooperativo" which is supported by CONACyT under contract No. 1124P-A

Proposal of an Interface to support Cooperative Work in a
Distributed Systems Environment *

Guillermo de Jesús Hoyos-Rivera
Maestría en Inteligencia Artificial

Universidad Veracruzana-LANIA, A.C.
Sebastián Camacho # 5

Xalapa, Veracruz
91000 MEXICO

e-mail: ghoyos@mia.uv.mx

Víctor Germán Sánchez-Arias
LANIA, A.C.

Enrique C. Rébsamen # 80
colonia Isleta

Xalapa, Veracruz
91090 MEXICO

e-mail: vsanchez@xalapa.lania.mx

Abstract

In the work presented we propose the definition, design
of a Cooperative Work Model (CWM) and a Cooperative
Work Language (CWL), and the implementation of an
interface to support Cooperative Work in a Distributed
Systems Environment, called ICW . Up to now this1

interface is already working, and we have already defined
several characteristics it should have in order to enhance
it and make it more effective at work.

Keywords:  Cooperation, Parallel, Distributed, Model,
Language, Communication.

1 Introduction

Cooperative work implies the coordination of several tasks
during their execution, all of them sharing a common goal,
cooperation rules that  coordinate the actions, and
communication primitives that make interaction possible. We
take this idea as the basis to pose the desirable characteristics
an interface of this kind should have.

1.1 Inspiration for this work

There are two facts that we have taken as the main
inspiration for this work.

The first one is that many problems can be expressed as
cooperative modules. Taking this assumption into account,
we can make all the modules of the solution to run in

parallel, doing execution faster.
The second one is that Message Passing Computation

(MPC) is becoming more accessible everyday. It is not
necessary anymore to buy a mainframe (like a Cray), or any
expensive special hardware (like the Transputers) to get
large computational power. At present time many universities
and enterprises have computer networks installed in their
buildings. A computer network can be viewed as a set of
loosely coupled processors , so almost any computer network2

can be viewed and used as a large single computational
resource, provided that the appropriate software is installed.
So every university or enterprise that has a computer
network has, potentially, a virtual parallel mainframe.

According to these ideas we have defined a Cooperative
Work Model (CWM) [Sánchez-Arias, 1996], and a
Cooperative Work Language (CWL) [Sánchez-Arias-2,
1996]. Their main goal is to make the expression of
Cooperative Work (CW), its parallelism and distribution
easier.

CWM and CWL are inspired upon the definition of CSP
[Hoare, 1978], and the basic notions of processes and pipes
used in Unix [Ritchie and Thompson, 1984].

2 Cooperative Work Model

Our CWM defines cooperative work as a set of interrelated
tasks, arranged in a hierarchical structure. These tasks will
be run in parallel in a distributed environment, and will have

 ICW stands for Interface for Cooperative Work.1
 Loosely coupled processors do not share memory.2

Information is shared by explicit message passing.



www.manaraa.com

the capability to communicate among them by explicit
message passing. The execution of the tasks will be ruled by
predefined cooperation rules, and communication will be
taken into effect by using some predefined communication
primitives.

Tasks are to be executed in any of the hosts of the whole
system. At any moment of the execution time of a CW
program, one particular host should be capable to execute
one or more tasks.

As a general overview, we can see the tasks arranged as
sets. In Figure # 1 we can appreciate a typical hierarchy
represented in this way. Task TC consists of its own
execution and the execution of tasks TR and TP. Task TR
consists of its own execution and the execution of n copies
of the task A. Finally TP consists of its own execution and
the execution of tasks X in host Sp, Y in host Sr, Z in host Sz
and W in a particular unknown host expressed by the
question mark (?). Tasks X, Y, Z, W and the n copies of task
A depend upon their own execution only, that is, they do not
contain other tasks into them.

Let us analyze the special case. W should be executed in
a particular host, however it is unknown which one it is, so
this case will make necessary to find the location where the
executable program resides in order to execute it.

As an example let us imagine we have the set of hosts
Sp, Sr, Sz, Sw and Ss, and the CW expressed in Figure # 1.
As TC, TR, TP and all the n copies of A (let us imagine
n=6) do no have an explicit place where they should be
executed, they can be executed in any host, meanwhile X, Y,
Z and W should be executed in a particular host each one. In
the special case of task W, we will assume that after calling
the locator process, it was determined that the corresponding
executable program resides in Sw.

Given the previous assumptions, we get the execution as
illustrated in Figure # 2.

Figure # 1

Figure # 2

2.1 Tasks

The minimal work unit of the cooperative work will be the
task. In our approach we consider a task as a completely
executable program  following the standards and binary
format of the particular operating system it was created for.

By definition, any task should have the following
characteristics:

a). any task executed in the interface starts and ends its
execution at some moment in time.

b). when execution is started, the task should optionally
receive some input parameters,

c). any particular task does not share memory with any
other task,

d). the only way to share information with other tasks is
by explicit message passing.

Any task may be classified according to four different
criteria: (1) the type of the task, (2) the level of the task into
the hierarchy, (3) the possible place where it is to be
executed, and (4) the number of copies of the program to be
executed concurrently.

Types of tasks
According to this criteria, a task can be a generic task, or a
CW task. A generic task is any general-purpose program that
can be executed by writing the command name in the
operating system prompt. Examples of this kind of tasks are���������	�	


, 
������������


, ���	����� ����������
�������� , etc. A CW
task is a compiled executable program explicitly written for
our interface. The standards to write this last kind of tasks
will be explained later in this document. 

Level in the hierarchy
According to this criteria, any task can be of any of two
types: atomic or composed.

An atomic task will be any executable program. It can be



www.manaraa.com

either, a CW task, or a generic task. This kind of task will
consist only of its own execution. In Figure # 1, all the
copies of task A, and tasks X, Y, Z and W, are atomic tasks.

A composed task can only be a CW task. This kind of
task will be the one that consists of its own execution, and
the execution of one or more atomic or composed tasks
spawned by it. A composed task has its own executable
code.

The tasks executed by a composed task will be called
members of that task, and the composed task executing other
tasks will be called the caller.

In Figure # 1, tasks TC, TR and TP are composed tasks.
Any task, atomic or composed, will be capable to

communicate with other tasks according to the
Communication Rank. This issue will be explained later in
this document.

Place of execution
According to the possible place where the tasks can be
executed, they can be classified as explicitly located or not
explicitly located tasks.

A not explicitly located task is the one that can be
executed in any host of the virtual parallel computer. It can
be possible by two means: (1) there is a copy of the
executable program in every host of the system or (2) the
executable program is accessible through a NFS system.

The place where this kind of tasks are to be executed will
be determined dynamically at runtime.

An explicitly located task will be executed always in the
same host, or a set of hosts of the same architecture. This
can be due to any of three reasons: (1) the executable
program does only exist in one host of the system, (2) the
executable program was compiled for a particular
architecture or (3) it is desirable to execute the program in
some particular host due to some particular reason, as could
be the speed of execution.

When using explicitly located tasks it will be necessary
to specify the host or the architecture where it should be
executed.

There is a special case: a task can be explicitly located,
but the host where it resides is unknown. Then it will use a
locator, in order to find, dynamically at runtime, the host
where the executable program resides, and then execute it.

Number of copies in concurrent execution
The interface should have the capability to execute several
copies of any task. Any replicated task, as they will be
called in future references, can be explicitly located or not
explicitly located. If they are explicitly located, then all the
copies of the task will be executed concurrently in the same
host or, if it was specified an architecture, the copies will be
executed in the subset of hosts of the specified architecture.
Otherwise, each copy will be executed in any host of the
system.

2.2 Cooperation rules

Every task which is member of a composed task will have
associated a cooperation rule to control its execution. We
have already defined two basic rules: ���������  and 	
���������
����
����
���������  stands for Synchronous Parallelism. When some
tasks are ruled by ���������  all of them are started at the same
time and keep working concurrently. The caller task will not
end until all the member tasks have terminated, however,
any member task does not depend on its caller task, nor on
the tasks that were spawned at the same time than it.
As an example, if we have the next expression:

��� ����������� ����� �������

the caller task will be 
�

, and the member tasks will be 
���

and 
���

. The caller task will not end until all the member
tasks have terminated, in this particular case, 

���
 and 

���
.

These ideas are illustrated in Figure # 3.

Figure # 3
������
����
	
���������  stands for Asynchronous Parallelism. This rule
operates almost in the same way than ��������� , but in this
case the caller task does not have to wait for all the member
tasks to terminate. Any task, including the caller task can
terminate without having to wait for the termination of any
other task working with this rule.

The same example posed for the last rule is useful for
this one, but with the difference that 

�
 will be able to

terminate independently of the termination time of tasks 
���

and 
���

.
As can be seen in Figure # 4, 

�
 does not have to wait

for 
���

 and 
���

 to be finished.



www.manaraa.com

Figure # 4

2.3 Communications

All CW tasks in a CWL program have a Communication
Rank. The Communication Rank specifies which tasks a
determined task will be able to communicate with. The
Communication Rank of a task T running into ICW is formed
by:
  * The composed task that spawned T
  * All the tasks spawned at the same time than T
  * All the tasks spawned by T

Taking again the model in Figure # 1. Tasks X, Y, Z and
W will only be able to communicate with task TP and with
each other, but not with tasks TR nor TC, which are outside
the Communication Rank. The only tasks that can
communicate with task TC are TR and TP.

When sending a message, the task involved in this
operation does not have to wait for it to be received. The
message is allocated in a buffer, and when the target process
is ready to receive, the message is taken from that buffer.

If when receiving a message there is no appropriate
buffer containing information addressed to the task involved
in this operation, it must wait until a message arrives.

3 The implementation

The developed interface is the medium by which it will be
able to map the model posed to an operating distributed
environment. Any task is an executable program residing in
one or several hosts of the system, or accessible through a
NFS system.

The interface will provide all the necessary mechanisms
to distribute, replicate and locate any task to be executed.
The execution of the tasks will be monitored and controlled
trying to guarantee a complete execution of all the programs
or, if a failure is found, the interface will report it. The goal
of this last characteristic is to make the debugging process

easier.
According to the previously explained definitions, we try

now to define the operating instrument to take cooperative
work into effect. The whole development is be called
Interface for Cooperative Work (ICW), and will be
constructed out of three components: (1) a base software on
which it will be constructed our interface, (2) a proprietary
language called Cooperative Work Language (CWL) to
specify the cooperation relation between tasks, (3) a set of
standards for writing CW tasks. The interface will have a
control strategy defined into itself.

3.1 The base software

In order to decide the tools we should use to implement our
interface we analyzed several alternatives. The main two
were  LAM  (Local Area Multicomputer) and PVM [Geist et3

al., 1995] (Parallel Virtual Machine). After studying both
alternatives, we decided to use PVM.

PVM is a portable message-passing programming system,
designed to link separate hosts to form a virtual machine,
which is a single, manageable computing resource.

The main two reasons to select PVM over LAM are: (1)
its native capability to spawn tasks and (2) its ability to be
installed and run on different architectures.

As it may be supposed, it is strictly necessary to have
installed PVM in order to be able to use this interface.

3.2 Cooperative Work Language

A typical program written in CWL has six sections:
  * Architectures declaration ( 	����	��� )
  * Hosts declaration ( �	������� )
  * Tasks declaration ( � 	
����� )
  * Generic tasks declaration ( ��� 	
����� )
  * Root task declaration ( �	�	��� )
  * Cooperative Work declaration ( �	� )

The first two sections ( 	����	���  and �	������� ) contain the
list of names of architectures and hosts respectively. Both,
architectures and hosts, declared in these sections must be
configured in the virtual computer in order to be accepted as
valid, although it is not necessary to have listed all the hosts
and architectures configured in the virtual computer in these
sections. It is not mandatory have these two sections. Then
can be omitted if there will not be explicitly located tasks.

The � 	
�����  section contains the declaration of all the
tasks that are to be involved in the execution. 

The existence verification of this kind of tasks will be
done at runtime.

In the ��� 	��
���  section will be listed all the generic tasks
(see previous definition). The interface will not accept any
generic task to be declared and used as a composed task.
The existence verification of this kind of tasks will be done

 LAM is an implementation of the MPI [MPIF, 1994]3

(Message Passing Interface) standard.



www.manaraa.com

at runtime. It is not mandatory to have a ��� 	
�����
declaration.

In both sections � 	
�����  and ��� 	
�����  it will be possible
to indicate that a task is going to be executed in a particular
host or a particular architecture. To indicate that a task is to
be executed in a particular host it should be used the
operator � � , and to indicate that it is a particular architecture
the operator � � .

If there is a declaration of a task in a particular host or
architecture, the name of the host or the architecture will be
validated with the hosts or architecture declaration
respectively.

The �	�	���  declaration indicates which task will be the
one that will contain, directly or indirectly, the other tasks.
In other words, the task declared as �	�	���  will be the
superset of the whole hierarchy. The �	�	���  task must be
declared previously in the � 	
�����  declaration. If not, or if it
is declared in the ��� 	
�����  declaration, it will not be
accepted.

Finally, the �	�  declaration indicates the structure of the
execution, and the rules that will control the relation between
tasks. Every task listed in the declaration of the cooperative
work will be validated against the tasks declared in the
� 	
�����  and ��� 	
�����  sections.

Any task declared in the ��� 	
�����  section will not be
accepted to be a composed task.

A typical CWL program looks like the next example:

ARCHS: SUN4,LINUX;
HOSTS: afrodita,hefestos,cronos;
TASKS:
test,test1->cronos,test2,test3,test4,tes
t5,test6=>LINUX;
GTASKS: test7;
ROOT: test;
CW {
test: SYNCP[test1,test2];
test2: PIPE[test3,test4];
test3: ASYNCP[test5(3)];
test4: SYNCP[test6(10),test7];
}

3.3 Writing CW tasks

As previously mentioned, PVM applications can be
programmed in either C, C++ or Fortran.

By now we have developed the C version only, however
it is open to a future implementor the implementation of the
corresponding interfaces for C++, Fortran, or any other
language.

Programs for the interface are generic C programs with
the only peculiarity that they must be compiled with the
preprocessor directive

#include "ICW.h"

This header file contains all the necessary definitions to

start working into the interface, to control the execution and
all the functions to communicate between tasks. Into this file
there are two main special functions:

void ICW_init(int argc, char *argv[])

and

void ICW_end(void).

� �	��� �����	���	�
 must be called as the first executable

instruction of the function 
�� ���
�	�
 in every CW task. This

function will receive from the caller the set of tasks it should
execute, and then execute them, sending to every one the
appropriate information for them to be able to start working.
It must be called with the standard arguments received by
the C program since that information is used by the interface
to determine the operating environment.

The last instruction of a ICW's proper task program must
be ICW_end(). This function will test the correct
termination of all the tasks spawned by the present task and
will terminate either, successfully or with a failure. It is not
necessary to call the standard C function ��� �	���	�

.� �	����� ���
�	�
 will do it with the appropriate exit code.

Every internal function and variable of the interface start
with the characters "

� �	��� ", so it is not recommendable to
use variable or function names following this convention in
order to avoid conflicts and unpredictable behaviors.

The minimal expression of a proper ICW task program
looks like the next example:

#include <stdio.h>
#include "ICW.h"

void main(int argc, char *argv[]) {
  ICW_init(argc, argv);
  ICW_end();
}

Of course these programs should be compiled with an
ANSI C compiler to get the executable file. Every ICW task
should be compiled with the next flags:

� � �����	��� �	�	��� �	��� ������� �
��� �����	��� �	�	��� �	�	����� �������
and

� ��
�� 
��

Every CW task should be placed in the directory
� � � ��� � 
�� 
�� � � ����� � � ���!� 	������ . It is possible to override
this standard by specifying the absolute path to the file in the
CWL program, or by changing this standard in the PVM
hosts file (see PVM documentation).



www.manaraa.com

Communication functions
We have defined a set of communication functions to
communicate the CW tasks running in the ICW environment.
As we have defined previously, every task has a
communication rank, which defines the natural reach for the
communication between tasks.

All the communication primitives to be used into the CW
tasks, will be delimited by this rank. If it were necessary to
establish communication with any task outside the rank, it
would be necessary to do one of two things: (1) use some
tasks as intermediaries to send the message or (2) use
directly the PVM identification functions to determine the
identity of the task which we want to communicate with, and
the use the PVM communication functions to send the
message. For an example, let us go back to Figure # 1.
Imagine that the task X needs to send a message to the task
A . As it is clear, A  is outside the communication rank of X.1 1

One way to solve the problem is to use tasks TP and TR
as intermediaries. Doing so, X would send the message to
task TP, then TP would send it to task TR, which would
finally send it to task A .1

The other way is to use functions like pvm_tasks() to
know the PVM tid of the task the message should be sent to,
then using the standard PVM functions to send the message.

ICW communication functions have been defined for each
possible datatype to be transmited, and all of them follow the
same standard.

In general there are functions for sending and receiving
data. The typical function to send data has the next
prototype:� �	��� 
 � ��� ��� � � � � ���	
 � � � ��� � � ��� � 
	� � �����
��� 
���� � � � ��� � � � � � � �	��
 � � � � ��
�
 � � � ��� � � � ���

where <datatype> is a valid simple datatype in the
programming languaje.

The only send function that is a bit different is that for
sending strings, and its prototype is as shown next:� �	��� 
 � ��� � 
	�������
�
� ��� � ����� � 
	� � ����� �
��

� �
����� ��� � ��� � ��������


 � ���

On the other hand we have the receive functions. The
prototype of the typical receive functions is as shown next:� �	��� � � � � ��� � ��� � � � � ���	
 � � � ��� � �����	����� � �����
��� 
���� � � � ��� � � � � � � �	��
 � � � � ��
�
 � � � ��� � � � � ���� �
� ���������

Here againt <datatype> is a valid datatype of the
programming languaje. The function for receiving strings has
the next prototype:� �	��� � � � � ��� � � 
	�������
�
� ��� � � ���	����� � �����
�
��

� � ����� ��� � ��� � ��������


 � � � ��� �
� ���������

The meaning of the parameters is shown next:

Parameters meaning�����
���������
� �
!
: Indicates with an identifier of a program

name, the task a message is expected from, or the task a
message is going to be sent to. The valid identifiers are� � � ��
���
 � � � , 

� ����� � � � � � � , 
� ����� � � � � ,� �	��� 
�� � ��������
  or a program name.

If a program name is used in this parameter, ICW will try
to find a program within the communication rank of the task

that calls the communication function with the specified
name.

If it is the case of a replicated task, and the parameter
copy is different from zero, the message will be sent to, or
received from the nth copy of the replicated task.

If it is used 
� �	����
���
 � � �  there are three possible

results. If it is used to send a message, and the 
�
��

�

parameter is zero, the message will be sent to all the member
tasks. If it is used to send or receive a message, and is called
with the 

�
��

�
 parameter different from zero, say n, the

message will be sent to, or received from, the nth task of the
member tasks. If it is used to receive a meesage and the��� 
��

 parameter is zero, a message from any of the member
tasks will be accepted.

If it is used the 
� �	��� � � �	� � �  identifier, the message

will be sent to, or will be accepted from the caller task.
With 

� � ��� � �!� �  the message will be sent to, or will be
accepted from the next task in the same level in the
hierarchy. The same happens with 

� �	��� 
�� � ��������
 , but in
this case it will be the previous task in the same level in the
hierarchy."	��#$���&%�'

: This parameter indicates the number of copy
of a replicated task, or the number of member task a
message is goint to be sent to, or is going to be received
from."&��#("�)

: This is an integer number that must match
between the sending and the receiving processes, and is used
as a validation of the messsage. A -1 in the receiver tells the
process to receive a message with any id number.* #+'�%,!.-/�0��1�2�23!��

: Is a pointer to the buffer of data to
be sent, or the storage area where data should be received.
Its type must match the type of the data being transmited."���#54�!��

: Indicates the length of the data buffer.4�����67#���1�#
: Indicates how long a process should wait

for a message to arrive. If it is zero, the wait time will be
300 seconds.

3.4 Execution of CWL programs

CW tasks must be executed through the CWL program. This
program, although compiled, does not generate any
executable code. If compilation is successful, all the tasks
defined in the CWL program will be tried out. If the
execution of all of them is successful, then the execution of
the CWL program will be successful. If only one of the tasks
fails, then the complete execution fails.

The compiler is called 
����8

. The syntax to use it is as
shown next:

icw <progname>

where 

��
���	� � 
��  is the name of the CWL program. The
 ����� � � 
��  must end with an 9 ����8  extension, otherwise it

will not be recognized.

Stages of execution
Execution is divided in two stages: the compilation of the



www.manaraa.com

CWL program, and the execution of all the tasks involved in
the cooperative work definition.

Compilation of the CWL program
In the first stage the CWL program is compiled.

The first step of the compilation consists in trying to
contact the PVM daemon (called pvmd3). It is absolutely
necessary that the interface be enrolled as a PVM task in
order to make possible the communication between it and the
�	�	���  task of the application.

If it is not possible to contact the PVM daemon, the
interface will try to start it. If it is not possible, it will be
impossible to compile the program, and the interface exits
with an error exit code.

PVM uses a hosts file to know which hosts will be
included in the parallel virtual machine . We have defined4

the name for the hosts file as 9 
�� 
 �.��
	�	
 , and it must
reside in the home directory of the user who is using the
interface.

Once it is verified the PVM daemon is running, the CWL
program will be compiled.

Once verified the syntax is right, the compiler will check
that all the declared architectures in the 	����	���  declaration,
and hosts declared in the �	�������  declaration, really exist in
the PVM environment. If this is not the case, the interface
will exit with an error.

Next the compiler will compile the � 	
�����  and ��� 	
�����
declarations. The existence of executable programs into the
hosts of the virtual computer is not verified at this moment,
but at runtime, however the compiler will check the
consistency of the declarations. The compiler will check too
that all the architectures and hosts used in the declaration of
the explicitly located tasks had been previously declared in
the corresponding sections.

Finally it will be tested that the task declared as the
�	�	���  task had been declared in the � 	
�����  declaration, as
well as all the tasks referenced in the �	�  declaration.

The result of compiling the � �  section will be an internal
representation of the hierarchy that will follow the execution
of the tasks. This hierarchy will be used at runtime to
determine the behavior of every part of the complete
execution.

Once compilation has been determined as successful and
the hierarchy has been obtained, the second stage is started.

Execution of the tasks
This stage consists of the execution of all the tasks involved
in the cooperative problem. The first one to be executed is
the �	�	���  task, which will be 


��	���
ed and enrolled as a

PVM task.
The reason to use 


��	���
 instead of the natural spawning

process of PVM is that any task spawned by PVM does not
have access to the standard input (stdin) nor the standard

output (stdout). Due to this restriction it is impossible the use
of these means to establish any communication with the user.
Since the use of the standard arguments � ��� �  and � ��� �  is
restrictied due to the specifications of the interface, not
having 


	�������
 and 


	���.�����
 would isolate the program

completely.
The interface will 

8 � �	�  for the end of the execution of
the � ���
�  task. If it was successful, the execution terminates
successfully, otherwise the interface will retry up to three
times the execution of the ��� �
�  task. If after the three times
the execution continues terminating with failure, then the
interface will exit with an error.

Execution control
This kind of programs need a good structure for the control
of the execution. It is necessary to know whether a program
finished successfully or with an error.

As previously mentioned, the complete execution will be
successful only if all its components were executed
successfully, and will be unsuccessful  if only one of the
tasks fails.

There is one special condition on execution control. If a
task is not a explicitly located task, or if it is explicitly
located in an architecture, and it has not been possible to
execute it in the first attempt, the interface will assume that
it may be possible to execute it on another machine, so it
will be called the locator in order to try to find the
corresponding executable program in some other machine. If
the program is found, it will be executed, otherwise, the
complete execution fails.

The reason because the failure of one of the tasks
produces the failure of the complete execution is that at any
moment, any process can communicate with any other
process. In other words, communication between processes
is arbitrary, anyway, directly or indirectly. So if the failed
process were restarted after the failure, it would not be
possible to guarantee the consistency of the messages sent
and the messages expected to be received.

4 Current state of the work

At the present time we have defined the model  to express
Cooperative Work, and we have finished implementing the
first version of the interface.

At the moment we have tested it with some small
programs, and it has demonstrated to work well.

We have tested it with a program that requires intensive
computation to construct a 3d image from two stereo-optical
images, and the interface has demostrated to be useful in
both ways: expression of cooperative work, and speed of
execution.

5 Conclusions

Although this is a young project, we have dedicated much
time trying to define the most desirable characteristics an
interface of this kind should have.

 See the PVM documentation to learn more about the4

options of this file.



www.manaraa.com

ICW is the first implementation of the CWM and the
CWL. This work demonstrated the feasibility of the model,
and will be the base for the analysis and implementation of
a more complete CWL.

Finally we must mention that this work is one of the first
approaches to solve problems through the cooperative
paradigm in distributed processing environments.

We think new paradigm can facilitate the introduction of
scientists into the world of parallel and distributed processing
since it provides an easy interface to both, the expression of
parallelism, and the writing and debugging of communicating
programs.

We consider this investigation and development area as
very promising for the near future.

6 Future work

There is a lot of work to do in the future. We have written
the interface to be used with C programs, however nowadays
PVM can work with C++ and Fortran, so the corresponding
interfaces could be developed. Even, in the future, PVM
could be implemented for other programming languages, so
the interface could be developed to work with those
programming languages when it happens.

It could be a good idea to write the interface to work on
Transputers, so it would be easy to profit the benefits offered
by this hardware.

Another development could be done in the future is to
improve the mechanisms to detect and, if possible, recover
failures. It would be desirable to have a more sophisticated
error recovering system.

Another important future development is the construction
of a more complex communication system. PVM has a very
versatile communication system, and all its virtues could be
employed profitably.

Finally it would be good to develop a GUI for this
interface, and a load balance system.

References

[Sánchez-Arias, 1996]
Sánchez-Arias, Víctor Germán
Arquitectura para el apoyo al trabajo
cooperativo basado en una red de sistemas
paralelos y distribuidos
Reporte interno LANIA
R1-1124P-A, marzo 1996

[Sánchez-Arias-2, 1996]
Sánchez-Arias, Víctor Germán
Lenguaje de trabajo cooperativo
Reporte interno LANIA
R2-1124A-P, marzo 1996

[Ritchie and Thompson, 1984]
Rtichie, Dennis M. & Thompson, K
The Unix Time-Sharing System
The Bell System Technical Journal 57
No. 6 pag 2.
Jul-aug, 1984

[Hoare, 1978]
Hoare, C. A. R.
Communicating Sequential Processes
Communications of the ACM
21(8): 666-667
1978

[Geist et al., 1995]
Geist, Al et al.
PVM: Parallel Virtual Machine
A User's Guide and Tutorial for Networked
Parallel Computing
The MIT Press
Cambridge, Massachusetts
London, England
http://netlib2.cs.utk.edu/pvm3/book/pvmbook.ps

[MPIF, 1994]
Message Passing Interface Forum
MPI: A Message-Passing Interface Standard
CRPC-TR94439
Center for Research on Parallel
Computation
Rice University
April, 1994
http://netlib2.cs.utk.edu/papers/mpibook/mpibook.ps

[Hoyos-Rivera, 1996]
Hoyos-Rivera, Guillermo de Jesús
Descripción de ICW
(Interface for Cooperative Work)
Reporte técnico interno
Maestría en Inteligencia Artificial
Universidad Veracruzana - LANIA, 1996


